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SUMARY

Spur-gear surface fatigue tests were conducted with two lubricants using a

single lot of consumable-electrode, vacuum-melted (CVM), AISI 9310 spur gears.
The gears were case carburized and hardened to Rockwell C60. The gear pitch
diameter was 8.89 cm (3.5 in.). The lot of gears was divided into two groups,
each of which was tested with a different lubricant. The test lubricants are
classified as synthetic polyol-ester-based lubricants. One lubricant is

30 percent more viscous than the other. Both lubricants have similar pressure

viscosity coefficients. Test conditions included a bulk gear temperature of
350 K (170 °F), a maximum Hertz stress of 1.71 GPa (248 ksi) at the pitch line,
and a speed of 10 000 rpm.

The surface fatigue life of gears tested with one lubricant was approxi-

mately 2.4 times that for gears tested with the other lubricant. The lubricant

with the 30-percent higher viscosity gave a calculated elastohydrodynamic (EHD)
film thickness that was 20 percent higher than the other lubricant. This

increased EHD film thickness is the most probable reason for the improvement in

surface fatigue life of gears tested with this lubricant over gears tested with
the less viscous lubricant.

INTRODUCTION

The surface-pitting fatigue of gears is affected by several variables.
The lubricant viscosity, other physical properties, the lubricant extreme-

pressure IEP) additives (or boundary film properties), and other chemical prop-
erties all influence the surface fatigue life of gears.	 For aircraft applica-
tions and other gearing applications. it is important to know how a given

lubricant may affect the surface fatigue life of a gear system. Therefore,

when a new or improved lubricant is developed and/or selected for an applica-
tion, a program to evaluate the fatigue life of the lubricant gear combination
should be conducted.

The NASA Lewis Research Center gear test rigs were used to evaluate sev-

eral lubricants (ref. 1) and lubricant additives (refs. 2 and 3). 	 It was found
that lubricants with similar viscosity but with different chemical content gave

improved gear fatigue lives that were up to five to one difference. Studies

on the effect of additives in a base stock lubricant (ref. 2), found that the
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lubricant containing a phosphorous-type load-carrying additive improved the
gear surface fatigue life by 2.4 times that of the same lubricant with no
additive.

In most gear systems the lubricant additives are necessary for the system
operation. The additive can minimize or prevent the wear and surface damage
resulting from very thin EHD or boundary lubrication conditions. The additives
either absorb on the surface film or react with the surface to form a film or
coating. This film or coating protects the surface by reducing the friction
coefficient and preventing metal to metal contact of the surface asperities
(refs. 4 and 5). These results indicate the necessity for conducting gear sur-
face fatigue tests on new lubricant formulations for various applications.
These tests results also indicate the effect that various additives in the
same viscosity lubricants can have on the surface pitting fatigue life. Other
test programs (refs. 6 and 7) have shown the effect of the lubricant viscosity
on the surface fatigue life of rolling-element components. The viscosity of
the lubricants contributes to the elastohydrodynamic (EHD)-film-forming pro-
perty, which also changes the surface fatigue life of the component.

The objective of the work reported herein was to determine the effect of
two different lubricants on the surface-pitting fatigue life of consumable-
electrode, vacuum-melted (CVM), carburized, and hardened AISI 9310 steel spur
gears. One lot of spur gears was manufactured from a single heat of CVM AISI
9310 material to accomplish t he objective. The gears were all case carburized,
hardened, and ground to the same specification. The gear pitch diameter was
8.89 cm (3.5 in.). The lot of gears was divided into two groups, each of which
was tested with a different lubricant. The test lubricants were synthetic
polyol-ester-based lubricants. The test conditions included a gear bulk tem-
perature of 350 K (170 °F), a maximum Hertz stress of 1.71 GPa (248 ksi) at
the pitch line, and a speed of 10 000 rpm.

APPARATUS, SPECIMENS, AND PROCEDURE

Gear Test Apparatus

The gear fatigue tests were performed in the NASA Lewis Research Center's
gear test apparatus. The test rig is shown in figure 1(a) and described in
reference 8. This test rig uses the four-square principle of applying the test
gear load so that the input drive only needs to overcome the frictional losses
in the system.

A schematic of the test rig is shown in figure 1(b). Oil pressure and
leakage flow are supplied to the load vanes through a shaft seal. As the oil
pressure is increased on the load vanes inside the slave gear. torque is
applied to the shaft. This torque is transmitted through the test gears back
to the slave gear where an equal but opposite torque is maintained by the oil
pressure. This torque on the test gear, which depends on the hydraulic pres-
sure applied to the load vanes, loads the gear teeth to the desired stress
level. The two identical test gears can be started under no load, and the load
can be applied gradually, without changing the running track on the gear teeth.

Separate lubrication systems are provided for the test gears and the main
gearbox. The two lubricant systems are separated at the gearbox shafts by
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pressurized labyrinth seals using nitrogen as the seal gas. The test gear
lubricant is filtered through a 5-pm nominal fiberglass filter. The test
lubricant can be heated electrically with an immersion heater. The skin tem-
perature of the heater is controlled to prevent overheating the test lubricant.

A vibration transducer mounted on the gearbox is used to automatically
shut off the test rig when a gear-surface fatigue spall occurs. The gearbox is
also automatically shut off if there is a loss of oil flow to either the main
gearbox or the test gears, if the test gear oil overheats, or if there is a
loss of seal gas pressurization.

The belt-driven test rig can be operated at several fixed speeds by chang-
ing pulleys. The operating speed for the tests reported herein was 10 000 rpm.

Test Materials

The test gears were manufactured from consumable-electrode vacuum-melted
(CVM), AISI 9310 steel from the same heat of material. The nominal chemical
composition of the material is given in table I. All sets of gears were case
carburized and heat treated in accordance with the heat treatment schedule of
table II. Figure 2 is a photomicrograph of an etched and polished gear tooth
showing the case and core microstructure of the AISI 9310 material. This mate-
rial had a case hardness of Rockwell C58 and a case depth of 0.97 mm
0.038 in.). The nominal core hardness was Rockwell C40.

Test Gears

Dimensions for the test gears are given in table III. All gears have a
nominal surface finish on the tooth face of 0.406 pm (16 pin.) rms and a
standard 20° involute profile with tip relief. Tip relief was 0.0013 cm
(0.0005 in.), starting at the highest point of single tooth contact.

Test Procedure

After the test gears were cleaned to remove the preservative, they were
assembled on the test rig. The test gears were run in an offset condition with
a 0.30-cm (0.120-in.) tooth-surface overlap to give a load surface on the gear
face of 0.28 cm (0.110 in.), thereby allowing for the edge radius of the gear
teeth.	 If both faces of the gears were tested, four fatigue tests could be
run for each pair of gears. All tests were run-in at a load of 1225 N/cm
(700 lb/in.) for 1 hr. The load was then increased to 5784 N/cm (3305 lb/in.),
which gives a 1.71 GPa (248 ksi) pitch-line maximum Hertz stress. At the
pitch-line load, the tooth bending stress was 0.21 GPa (30 000 psi) if plain
bending is assumed. However, because of the offset load, an additional stress
is imposed on the tooth bending stress. Combining the bending and torsional
moments gives a maximum stress of 0.26 GPa (37 000 psi). This bending stress
does not include the effects of tip relief which would also increase the bend-
ing stress.	 In general, 20 tests were run for each lubricant.

Operating the test gears at 10 000 rpm gave a pitch-line velocity of
46.55 m/sec (9163 ft/min). Lubricant was supplied to the inlet mesh at
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800 cm3 /min at 320±6 K (116±10 °F). The lubricant outlet temperature was
nearly constant at 350±3 K (170±5 °F). The tests ran continuously (24 hr/day)
until they were automatically shut down by the vibration detection transducer

located on the gearbox adjacent to the test gears. The lubricant circulated

through a 5-pm fiberglass filter to remove wear particles. After each test the
lubricant and filter element were discarded.	 Inlet and outlet oil temperatures

were continuously recorded on a strip-chart recorder. After each test the sys-

tem was partially disassembled, flushed with trichloroethane and their with
alcohol, dried, and reassembled before a new lubricant was used.

Test Lubricant

Two lubricants were used for endurance tests with the AISI 9310 gear test
specimens. Both are classified as polyol-ester synthetic lubricants. A sum-

mary of the properties of these lubricants is given in table IV. The Navy Air
Propulsion Center (NAPC) codes for the lubricant are given in the table. The

additive and chemical data for these lubricants are proprietary to the respec-

tive manufacturers. It is expected that both lubricants would have antiwear

additives as well as oxidation inhibitors.

The reference lubricant PE-5-L-1274 is used in the program to compare with
other lubricants. The lubricants PE-5-L-1307 and PE-5- L-1553 are the same
lubricant, but two different batches were used. Both of these last two lubri-

cants meet the military MIL-L-23699 lubricant specification.

The pitch-line elastohydrodynamic (EHD) film thickness was calculated for

each of the lubricants by using the method described in references 9 and 10 and
the data of table IV. It was assumed for this film-thickness calculation that

the gear temperature at the pitch line was equal to the oil outlet temperature

and that the oil on the surface of the gear tooth entering the contact zone was
equal to the gear temperature, even though the oil inlet or oil jet temperature

was considerably lower. The gear surface temperature may be somewhat higher

than the oil outlet temperature, especially at the end points of sliding con-

tact. The computed EHD film thicknesses are given in table IV as are the ini-
tial A ratios (film thickness divided by composite surface roughness ( h/a) at
the 1.71 -CPa (248-ksi) pitch-line maximum Hertz stress). Based on the A val-
ues, the lives of the gears with each lubricant would not be expected to be

significantly different except when additives became important (ref. 3).

RESULTS AND DISCUSSION

The gear fatigue life for each of the two lubricants is shown in figure 3

and is summarized in table V. The surface-pitting fatigue life of the AISI

9310 gears run with lubricant A. a polyol-ester synthetic oil, is shown in fig-
ure 3(a). These data, which are shown on Weibull coordinates. were analyzed by

the method described in reference 11. The life shown is that of gear pairs
failed in millions of stress cycles. The gear teeth receive one stress cycle

per revolution. A failure is defined as one or more spalls covering more than

50 percent of the width of the tooth Hertzian contact. A typical fatigue span
is shown in figure 4(a): a cross section of the spall is shown in figure 4(b).
The failure index in figure 3 indicates the number of failures out of the num-
ber of tests run. For lubricant A, the failure index was 30 out of 30. The
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10- and 50-percent system lives (these are the lives at a 90- and 50-percent
probability of survival, respectively) were 5.1 and 20.4 million revolutions or

stress cycles, respectively.

The surface-pitti7a fatigue life of the CVM AISI 9310 steel spur gears run
with lubricant B, also a polyol-ester synthetic oil, is shown in figure 3(b).

A typical fatigue spall for lubricant B is shown in figure 5(a); a cross sec-

tion of the spall is shown in figure 5(b). The 10- and 50--percent system lives

with this fluid were 12.1 and 76 million stress cycles, respectively. The
10-percent life of lubricant B is nearly 2.4 times greater than the life

obtained for lubricant A. The differences in these lives, based on the confi-
dence numbers given in table V, are statistically significant. 	 (The confidence
number indicates the percentage of time the order of the test results would be

the same. For a confidence number of 84 percent, lubricant B will produce a
higher life than lubricant A 84 out of t00 tests. Generally, a 2 -0 or a
95-percent confidence is considered statistically significant. However, expe-
rience has shown that a confidence number of 80 percent or greater is necessary

to draw useful conclusions regarding life differences.)

- The difference in surface fatigue life between lubricants A and B can be
partially explained by the difference in viscosity between the two lubricants.

The viscosity of lubricant B is 30 percent higher than that of lubricant A.
This higher viscosity gives a minimum END film thickness that is 20 percent
higher for lubricant B, assuming that both lubricants have the same pressure

viscosity coefficient. Since both lubricants have similar base stocks, one

would expect them to have nearly identical pressure viscosity coefficients. It

is shown in reference 12 that the EHD lubricant film thickness can affect the

depth to the maximum subsurface shear stress. Tests with bearings using lubri-
cants that produce different film thicknesses have shown improved surface

fatigue life with increased EHD film thickness (ref. 13). The EHD film thick-
ness for these tests was in the range where small changes in EHD film thick-

ness can cause significant changes in the surface fatigue life (ref. 14).

Another factor contributing to differences in surface fatigue life in
gears is the type of additive used in the lubricant. 	 In reference 2 it was
demonstrated that a phorphorous-type additive can improve the surface fatigue

life of gears. Because the type and amount of additives in these lubricants

is unknown, it cannot be determined from this test whether the additives in
these lubricants effected the gear life.

SUMMARY" OF RESULTS

Spur-gear surface-pitting fatigue tests were conducted with two lubricants

using a single lot of consumable-electrode, vacuum melted (CVM), .AISI 9310 spur
gears. The gears were case carburized and hardened to Rockwell C60. The bear
pitch diameter was 8.89 cm (3.5 in.). The lot of gears was divided into two

groups, each of which was tested with a different test lubricant. The test
lubricants are classified as synthetic polyol-ester-based lubricants. Although

lubricant B is 30 percent more viscous than lubricant A, both have similar
pressure viscosity coefficients. Test conditions included a bulk gear tempera-

ture of 350 K (170 °F), a maximum Hertz stress of 1.71 GPa (248 ksi) at the

pitch line, and a speed of 10 000 rpm. The following results were obtained:
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1. The surface fatigue life of gears tested with lubricant B was approxi-
mately 2.4 times the life of gears tested with lubricant A.

2. The 30-percent higher viscosity of lubricant B over that of lubricant A
gave a calculated elastohydrodynamic (EHD) film thickness for lubricant B that
is 20 percent higher than for lubricant A. This increased film thickness is
the most probable cause for the improvement in surface fatigue life of gears
tested with lubricant B over that for gears tested with lubricant A.
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TABLE I. - NOMINAL CHEMICAL COMPOSTION OF

AISI 9310 GEAR MATERIAL

[Composition, wt %.]

Chemical C Mn Si Ni Cr Mo Cu P S

wt % 0.10 0.63 0.27 3.22 1.21 0.12 0.13 0.005 0.005

TABLE II. - HEAT TREATMENT FOR AISI 9310

Step Process Temperature Time,
hr

K OF

1 Preheat	 in air ---- ---- ------
2 Carburize 1172 1650 8
3 Air cool	 to room	 temperature ---- ---- ------
4 Copper plate all over ---- ---- ------
5 Reheat 922 1200 2.5
6 Air cool	 to room temperature ---- ---- ------
7 Austenitize 1117 1550 2.5
8 Oil quench ---- ---- ------
9 Subzero cool 180 -120 3.5

10 Double temper 450 350 2 each
11 Finish grind ---- ---- ------
12 Stress	 relieve 450 350 2
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TABLE III. - SPUR-GEAR DATA

[Gear tolerance per ASMA class 12.1

Number of teeth	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 28
Diametral pitch	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 8
Circular pitch, cm (in.) 	 . . . . . . . . . . . . . . . 	 0.9975 (0.3927)
Whole depth, cm (in.)	 . . . . . . . . . . . . . . . . .	 0.762 (0.300)
Addendum, cm (in.)	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.318 (0.125)
Chordal tooth thickness reference, cm (in.) . . . . . . . 	 0.485 (0.191)
Pressure angle, deg	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 20
Pitch diameter, cm (in.) 	 . . . . . . . . . . . . . . . . 	 8.890 (3.500)
Outside diameter, cm (in.)	 . . . . . . . . . . . . . . . 	 9.525 (3.750)
Root fillet, cm (in.)	 . . . . . . . . . . 0.102 to 0.152 (0.04 to 0.06)
Measurement over pins, cm (in.) . . .	 9.603 to 9.630 (3.7807 to 3.7915)
Pin diameter, cm (in.) 	 . .	 8.549 (0.216)
Backlash reference, cm (in.)	 . . . . .	 0.0254 (0.010)
Tip relief, cm (in.) 	 . . . . . . . .	 0.001 to 0.0015 (0.0004 to 0.0006)
Surface finish, µm (pin.)	 .	 . .	 .	 .	 . .	 . . .	 . . .	 .	 . . .	 0.406 (16)

TABLE IV. - LUBRICANT PROPERTIES

Lubricant

NASA	 identification A B

NAPC code number PE-5-L-1274 PE-5-L-1307 PE-5-L-1553

Kinematic viscosity at	 -
311 K	 (100	 °F) 21.0 30.27 29.11
373 K	 (210	 °F) 4.31 5.46 5.32
Flash point K	 (°F) 516	 (470) 539	 (510) 539	 (510)
Pour point	 K	 (°F) <200	 (<-100) 220	 (-64) 213	 (-76)

Specific gravity at -
-----298 K	 (77	 °F) 0.998

289 K	 (60	 °F) 1.000
Total acid number,	 tan

mg KoH/g oil 0.07 0.03
Elastohydrodynamic film

thickness,	 h,	 µm	 (pin.) 0.432	 (17) 0.518	 (20.4)
A	 ratio	 (h/a) 0.75 0.90
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TABLE V. - SURFACE-PITTING (ROLLING-ELEMENT) FATIGUE LIVES

[NASA spur-gear test apparatus; material, CVM AISI 9310; gear bulk temperature,
350 K (170 °F); maximum hertz stress, 1 GPa (248 ksi); speed, 10 000 rpm.]

Lubricant code Lubricant
basestock

Gear	 system	 life,
millions of	 stress cycles

Weibull
slope

Failure
indexa

Confidence
number,b

NASA NAPC percent
10 percent 50 percent

A PE-S- Polyol- 5.1 20.4 1.36 30 out --
L-1274 ester of 30

B PE-S- Polyol- 12.1 76 1.02 20 out 84
L-1307 ester of 20
PE-S-
L-1553

aNumber of failures out of number of tests.
bPercent of time that 10-percent lire obtained with each lubricant will have the same

relation to the 10-percent life of lubricant NASA F.
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Figure 1.— NASA Lewis Research Center's gear fatigue test apparatus.
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(a) Case.
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Figure 2.— Photomicrographs of case and core of CVM AISI

9310 spur gears.
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Figure 3.—Surface-pitting fatigue lives of CVM AISI 9310 spur gears run with two

different lubricants. Gear pitch diameter, 8.59 cm (3.5 in.), speed, 10 000 rpm,
maximum hertz stress, 1.71 GPa (248 ksi); gear temperature, 350 K (170 °F).
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(a) Typical fatigue spall.

(b) Cross section of typical fatigue spall.

Figure 4.— Fatigue spall for lubricant A.
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(a) Typical fatigue spall.

(b) Cross section of typical fatigue spall.

Figure 5.— Fatigue spall for lubricant B.
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